Радиоактивный с 14. Василенко И.Я., Осипов В.А., Рублевский В.П

26.12.2023 Лестница
кэВ Удельная энергия связи (на нуклон) 7 520,319(0) кэВ Период полураспада 5,70(3)·10 3 лет Продукты распада 14 N Спин и чётность ядра 0 + Канал распада Энергия распада β − 0,156476(4) МэВ

Углерод-14 является одним из природных радиоактивных изотопов. 27 февраля 1940 года его впервые обнаружили во время своих экспериментов американские физики Мартин Дэвид Кеймен и Самуэл Рубен . Период его полураспада , составляющий 5730±30 лет, был установлен позже (Мартин Кеймен в своих первых экспериментах получил 2700 и 4000 лет , Либби в 1951 году принял срок полураспада в 5568±30 лет). Это позволило использовать данный изотоп для установления возраста радиоактивным путём в геологии при датировании биоматериалов возраста до 50 000 лет . Наиболее часто используется в ледниковой и постледниковой геологии, в археологии, а также в физике атмосферы, геоморфологии, гляциологии, гидрологии и почвоведении, в физике космических лучей, физике Солнца и в биологии, не только для датировок, но и как трассер различных природных процессов.

Углерод-14 образуется в атмосфере из азота-14 под воздействием космических лучей. Относительное содержание углерода-14 по отношению к «обычному» (углероду-12) в атмосфере остается примерно постоянным (приблизительно 1:10 12). Как и обычный углерод , 14 C вступает в реакцию с кислородом , образуя углекислый газ , который нужен растениям в процессе фотосинтеза . Люди и различные животные затем потребляют растения и изготовленные из них продукты в пищу, усваивая таким образом и углерод-14.

Образование и распад

Углерод-14 образуется в верхних слоях тропосферы и стратосферы в результате поглощения атомами азота-14 тепловых нейтронов , которые в свою очередь являются результатом взаимодействия космических лучей и вещества атмосферы:

\mathrm{~^{1}_{0}n} + \mathrm{~^{14}_{7}N} \rightarrow \mathrm{~^{14}_{6}C}+ \mathrm{~^{1}_{1}H}. \mathrm{~^{14}_{6}C}\rightarrow\mathrm{~^{14}_{7}N}+ e^- + \bar{\nu}_e.

См. также

Напишите отзыв о статье "Углерод-14"

Примечания

Отрывок, характеризующий Углерод-14

В десятом часу за Наташей и Петей приехали линейка, дрожки и трое верховых, посланных отыскивать их. Граф и графиня не знали где они и крепко беспокоились, как сказал посланный.
Петю снесли и положили как мертвое тело в линейку; Наташа с Николаем сели в дрожки. Дядюшка укутывал Наташу и прощался с ней с совершенно новой нежностью. Он пешком проводил их до моста, который надо было объехать в брод, и велел с фонарями ехать вперед охотникам.
– Прощай, племянница дорогая, – крикнул из темноты его голос, не тот, который знала прежде Наташа, а тот, который пел: «Как со вечера пороша».
В деревне, которую проезжали, были красные огоньки и весело пахло дымом.
– Что за прелесть этот дядюшка! – сказала Наташа, когда они выехали на большую дорогу.
– Да, – сказал Николай. – Тебе не холодно?
– Нет, мне отлично, отлично. Мне так хорошо, – с недоумением даже cказала Наташа. Они долго молчали.
Ночь была темная и сырая. Лошади не видны были; только слышно было, как они шлепали по невидной грязи.
Что делалось в этой детской, восприимчивой душе, так жадно ловившей и усвоивавшей все разнообразнейшие впечатления жизни? Как это всё укладывалось в ней? Но она была очень счастлива. Уже подъезжая к дому, она вдруг запела мотив песни: «Как со вечера пороша», мотив, который она ловила всю дорогу и наконец поймала.
– Поймала? – сказал Николай.
– Ты об чем думал теперь, Николенька? – спросила Наташа. – Они любили это спрашивать друг у друга.
– Я? – сказал Николай вспоминая; – вот видишь ли, сначала я думал, что Ругай, красный кобель, похож на дядюшку и что ежели бы он был человек, то он дядюшку всё бы еще держал у себя, ежели не за скачку, так за лады, всё бы держал. Как он ладен, дядюшка! Не правда ли? – Ну а ты?
– Я? Постой, постой. Да, я думала сначала, что вот мы едем и думаем, что мы едем домой, а мы Бог знает куда едем в этой темноте и вдруг приедем и увидим, что мы не в Отрадном, а в волшебном царстве. А потом еще я думала… Нет, ничего больше.
– Знаю, верно про него думала, – сказал Николай улыбаясь, как узнала Наташа по звуку его голоса.
– Нет, – отвечала Наташа, хотя действительно она вместе с тем думала и про князя Андрея, и про то, как бы ему понравился дядюшка. – А еще я всё повторяю, всю дорогу повторяю: как Анисьюшка хорошо выступала, хорошо… – сказала Наташа. И Николай услыхал ее звонкий, беспричинный, счастливый смех.
– А знаешь, – вдруг сказала она, – я знаю, что никогда уже я не буду так счастлива, спокойна, как теперь.
– Вот вздор, глупости, вранье – сказал Николай и подумал: «Что за прелесть эта моя Наташа! Такого другого друга у меня нет и не будет. Зачем ей выходить замуж, всё бы с ней ездили!»
«Экая прелесть этот Николай!» думала Наташа. – А! еще огонь в гостиной, – сказала она, указывая на окна дома, красиво блестевшие в мокрой, бархатной темноте ночи.

Граф Илья Андреич вышел из предводителей, потому что эта должность была сопряжена с слишком большими расходами. Но дела его всё не поправлялись. Часто Наташа и Николай видели тайные, беспокойные переговоры родителей и слышали толки о продаже богатого, родового Ростовского дома и подмосковной. Без предводительства не нужно было иметь такого большого приема, и отрадненская жизнь велась тише, чем в прежние годы; но огромный дом и флигеля всё таки были полны народом, за стол всё так же садилось больше человек. Всё это были свои, обжившиеся в доме люди, почти члены семейства или такие, которые, казалось, необходимо должны были жить в доме графа. Таковы были Диммлер – музыкант с женой, Иогель – танцовальный учитель с семейством, старушка барышня Белова, жившая в доме, и еще многие другие: учителя Пети, бывшая гувернантка барышень и просто люди, которым лучше или выгоднее было жить у графа, чем дома. Не было такого большого приезда как прежде, но ход жизни велся тот же, без которого не могли граф с графиней представить себе жизни. Та же была, еще увеличенная Николаем, охота, те же 50 лошадей и 15 кучеров на конюшне, те же дорогие подарки в именины, и торжественные на весь уезд обеды; те же графские висты и бостоны, за которыми он, распуская всем на вид карты, давал себя каждый день на сотни обыгрывать соседям, смотревшим на право составлять партию графа Ильи Андреича, как на самую выгодную аренду.
Граф, как в огромных тенетах, ходил в своих делах, стараясь не верить тому, что он запутался и с каждым шагом всё более и более запутываясь и чувствуя себя не в силах ни разорвать сети, опутавшие его, ни осторожно, терпеливо приняться распутывать их. Графиня любящим сердцем чувствовала, что дети ее разоряются, что граф не виноват, что он не может быть не таким, каким он есть, что он сам страдает (хотя и скрывает это) от сознания своего и детского разорения, и искала средств помочь делу. С ее женской точки зрения представлялось только одно средство – женитьба Николая на богатой невесте. Она чувствовала, что это была последняя надежда, и что если Николай откажется от партии, которую она нашла ему, надо будет навсегда проститься с возможностью поправить дела. Партия эта была Жюли Карагина, дочь прекрасных, добродетельных матери и отца, с детства известная Ростовым, и теперь богатая невеста по случаю смерти последнего из ее братьев.

Углерод-14 является одним из природных радиоактивных изотопов. Первые указания на его существование были получены в 1936 году, когда британские физики У. Бёрчем и М. Голдхабер облучали медленными нейтронами ядра азота-14 в фотоэмульсии и обнаружили реакцию 14 N(n , p ) 14 C . В 1940 году углерод-14 смогли выделить американские физики Мартин Дэвид Кеймен и Самуэл Рубен , облучавшие на циклотроне графитовую мишень дейтронами ; 14 C образовывался в реакции 13 C(d , p ) 14 C . Его период полураспада был установлен позже (Мартин Кеймен в своих первых экспериментах получил 2700 и 4000 лет , Уиллард Либби в 1951 году принял период полураспада в 5568 ± 30 лет ). Современное рекомендованное значение периода полураспада 5700 ± 30 лет приведено в базе данных Nubase-2016 и основано на пяти экспериментах по измерению удельной активности, проведённых в 1960-х годах .

Углерод-14 образуется в верхних слоях тропосферы и стратосферы в результате поглощения атомами азота-14 тепловых нейтронов , которые в свою очередь являются результатом взаимодействия космических лучей и вещества атмосферы:

Ещё один природный канал образования углерода-14 - происходящий с очень малой вероятностью кластерный распад некоторых тяжёлых ядер, входящих в радиоактивные ряды . В настоящее время обнаружен распад с эмиссией углерода-14 ядер 224 Ra (ряд тория), 223 Ra (ряд урана-актиния), 226 Ra (ряд урана-радия); предсказан, но экспериментально не обнаружен аналогичный процесс для других природных тяжёлых ядер (кластерная эмиссия углерода-14 обнаружена также для отсутствующих в природе нуклидов 221 Fr , 221 Ra , 222 Ra и 225 Ac). Скорость образования радиогенного углерода-14 по этому каналу пренебрежимо мала по сравнению со скоростью образования космогенного углерода-14 .

При испытаниях ядерного и особенно термоядерного оружия в атмосфере в 1940-1960-х годах углерод-14 интенсивно образовывался в результате облучения атмосферного азота тепловыми нейтронами от ядерных и термоядерных взрывов. В результате содержание углерода-14 в атмосфере сильно возросло (так называемый «бомбовый пик», см. рис.), однако впоследствии стало постепенно возвращаться к прежним значениям ввиду ухода в океан и прочие резервуары. Другой техногенный процесс, повлиявший на среднее отношение [ 14 C]/[ 12 C] в атмосфере, действует в направлении уменьшения этой величины: с началом индустриализации (XVIII век) значительно увеличилось сжигание угля, нефти и природного газа, то есть выброс в атмосферу древнего ископаемого углерода, не содержащего 14 C (так называемый эффект Зюсса) .

Ядерные реакторы, использующие воду в активной зоне, также являются источником техногенного загрязнения углеродом-14 .

Общее количество углерода-14 на Земле оценивается в 8500 петабеккерелей (около 50 тонн ), в том числе в атмосфере 140 ПБк (840 кг ). Количество углерода-14, попавшего в атмосферу и другие среды в результате ядерных испытаний, оценивается в 220 ПБк (1,3 тонны ) .

Скорость распада не зависит от химических и физических свойств окружения. Грамм атмосферного углерода содержит около 1,5×10 −12 г углерода-14 и излучает около 0,6 бета-частиц в секунду за счёт распада этого изотопа. Следует отметить, что с этой же скоростью углерод-14 распадается и в человеческом теле; каждую секунду в организме человека происходит несколько тысяч распадов. Ввиду малой энергии образующихся бета-частиц мощность эквивалентной дозы внутреннего облучения, получаемого по этому каналу (0,01 мЗв /год, или 0,001 бэр /год), невелика по сравнению с мощностью дозы от внутреннего углерод , 14 C вступает в реакцию с кислородом , образуя углекислый газ , который нужен растениям в процессе фотосинтеза . Люди и различные животные затем потребляют растения и изготовленные из них продукты в пищу, усваивая таким образом и углерод-14. При этом соотношения концентраций изотопов углерода [ 14 C]: [ 13 C]: [ 12 C] сохраняются практически такими же, как в атмосфере; изотопное фракционирование в биохимических реакциях изменяет эти соотношения лишь на несколько промилле, что может быть учтено .

В умершем живом организме углерод-14 постепенно распадается, а стабильные изотопы углерода остаются без изменений. То есть соотношение изотопов изменяется с течением времени. Это позволило использовать данный изотоп для при датировании биоматериалов и некоторых неорганических образцов возраста до 60 000 лет . Наиболее часто используется в археологии, в ледниковой и постледниковой геологии, а также в физике атмосферы, геоморфологии, гляциологии, гидрологии и почвоведении, в физике космических лучей, физике Солнца и в биологии, не только для датировок, но и как трассер различных природных процессов .

Используется для определения заражения желудочно-кишечного тракта Helicobacter pylori . Пациенту дают препарат мочевины с содержанием 14 C. В случае инфекции H.pylori бактериальный фермент уреазы разрушает мочевину в аммиак и радиоактивно меченый углекислый газ, который может быть обнаружен в дыхании пациента . Сегодня тест на основе меченых атомов 14 C стараются заменять на тест со стабильным 13 C, который не связан с радиационными рисками.

Когда первичные космические лучи, неустанно бомбардирующие Землю, попадают в ядра атомов в атмосфере Земли, они создают большое число вторичных частиц — пионов, протонов, нейтронов, мюонов, электронов, позитронов и фотонов. При столкновении нейтрона с ядром азота-14 (7 протонов и 7 нейтронов) образуется ядро углерода-14 (6 протонов и 8 нейтронов) и высвобождается протон (ядро атома водорода, один протон и ноль нейтронов). Углерод-14 — радиоактивный элемент. Период его полураспада составляет пять тысяч семьсот лет.

Углерод-14, который создают космические лучи, вступает в реакцию с кислородом и образует углекислый газ, усваиваемый растениями в процессе фотосинтеза. Люди и животные едят растения и тоже получают углерод-14. Относительное содержание углерода-14 по отношению к «обычному» (углероду-12) в атмосфере остается примерно постоянным (приблизительно 1:109), и в живых организмах соотношение примерно такое же. Атомы углерода-14 постоянно распадаются на азот-14 (и электрон), но в организм регулярно поступают новые. Так что пропорция всегда сохраняется.

Но как только организм умирает, углерод в него поступать перестает. И если на момент смерти соотношение содержания углерода-14 и обычного углерода известно, то со временем оно меняется, так как углерод-14 распадается (период полураспада составляет около 5700 лет), а «обычный» углерод — нет. Таким образом, определив отношение содержания углерода-14 и углерода-12, при помощи следующей формулы можно довольно точно определить возраст останков найденного организма.

t = x t½

ln — это натуральный логарифм, No/Nf — соотношение содержания углерода-14 в живой ткани и его содержания в образце, а t½ — период полураспада углерода-14 (5700 лет). Таким образом, если в образце всего 5% от нормального содержания углерода-14, получаем:

ln (1/0,05) = 2,996

2,996/0,693 = 4,32

4,32х5700 = 24624 (года)

Так как период полураспада углерода-14 составляет всего 5700 лет, подобная датировка будет точной только для ископаемых организмов, возраст которых не превышает 40−60 тысяч лет. Но тот же принцип датировки применяется и на базе других элементов — таких как калий-40 (период полураспада составляет 1,3 млрд. лет), уран-235 (704 млн. лет), уран-238 (4,5 млрд. лет) и т. д. C помощью датирования по урану-238 геологи, например, довольно точно определяют возраст гранитов.

Радиоуглеродное датирование исходит из предположения, что количество углерода-14 в атмосфере на протяжении последних 40−60 тысяч лет остается примерно постоянным. На самом деле оно колеблется, и поэтому можно рассчитать лишь примерный возраст. Чтобы определить возраст образцов с большей точностью, требуется знать содержание углерода-14 в атмосфере для различных эпох. Эти данные получают, анализируя находки, возраст которых можно точно определить — например, деревья с годичными кольцами и т. п.

Единственная проблема заключается в том, что для объектов, умерших после 1940 года, когда человечество открыло для себя ядерную энергию, из-за выбросов радиоактивных веществ в атмосферу подобная датировка будет неточной.

Метод радиоуглеродного датирования был предложен в 1950 году Уиллардом Либби. В 1960-м за изобретение этого метода Либби получил Нобелевскую премию по химии.

Что такое полураспад

Все атомы радиоактивных изотопов подвержены радиоактивному распаду, в результате которого они превращаются в атомы других элементов. Глядя на данный конкретный атом, мы не смогли бы определить, когда он распадется. Но если взять большое количество таких атомов, можно с уверенностью сказать, что половина из них наверняка распадется в течение вполне определенного промежутка времени. Это время и называется временем полураспада радиоактивного изотопа.

Открытие

Углерод-14 является одним из природных радиоактивных изотопов. Первые указания на его существование были получены в 1936 году, когда британские физики У. Бёрчем и М. Голдхабер облучали медленными нейтронами ядра азота-14 в фотоэмульсии и обнаружили реакцию 14 N(n , p ) 14 C . В 1940 году углерод-14 смогли выделить американские физики Мартин Дэвид Кеймен и Самуэл Рубен, облучавшие на циклотроне графитовую мишень дейтронами ; 14 C образовывался в реакции 13 C(d , p ) 14 C . Его период полураспада был установлен позже (Мартин Кеймен в своих первых экспериментах получил 2700 и 4000 лет , Уиллард Либби в 1951 году принял период полураспада в 5568 ± 30 лет ). Современное рекомендованное значение периода полураспада 5700 ± 30 лет приведено в базе данных Nubase-2016 и основано на пяти экспериментах по измерению удельной активности, проведённых в 1960-х годах .

Образование

Углерод-14 образуется в верхних слоях тропосферы и стратосферы в результате поглощения атомами азота-14 тепловых нейтронов , которые в свою очередь являются результатом взаимодействия космических лучей и вещества атмосферы:

0 1 n + 7 14 N → 6 14 C + 1 1 H . {\displaystyle \mathrm {~_{0}^{1}n} +\mathrm {~_{7}^{14}N} \rightarrow \mathrm {~_{6}^{14}C} +\mathrm {~_{1}^{1}H} .}

Ещё один природный канал образования углерода-14 - происходящий с очень малой вероятностью кластерный распад некоторых тяжёлых ядер, входящих в радиоактивные ряды . В настоящее время обнаружен распад с эмиссией углерода-14 ядер 224 Ra (ряд тория), 223 Ra (ряд урана-актиния), 226 Ra (ряд урана-радия); предсказан, но экспериментально не обнаружен аналогичный процесс для других природных тяжёлых ядер (кластерная эмиссия углерода-14 обнаружена также для отсутствующих в природе нуклидов 221 Fr , 221 Ra , 222 Ra и 225 Ac). Скорость образования радиогенного углерода-14 по этому каналу пренебрежимо мала по сравнению со скоростью образования космогенного углерода-14 .

При испытаниях ядерного и особенно термоядерного оружия в атмосфере в 1940-1960-х годах углерод-14 интенсивно образовывался в результате облучения атмосферного азота тепловыми нейтронами от ядерных и термоядерных взрывов. В результате содержание углерода-14 в атмосфере сильно возросло (так называемый «бомбовый пик», см. рис.), однако впоследствии стало постепенно возвращаться к прежним значениям ввиду ухода в океан и прочие резервуары. Другой техногенный процесс, повлиявший на среднее отношение [ 14 C]/[ 12 C] в атмосфере, действует в направлении уменьшения этой величины: с началом индустриализации (XVIII век) значительно увеличилось сжигание угля, нефти и природного газа, то есть выброс в атмосферу древнего ископаемого углерода, не содержащего 14 C (так называемый эффект Зюсса) .

Ядерные реакторы, использующие воду в активной зоне, также являются источником техногенного загрязнения углеродом-14 .

Общее количество углерода-14 на Земле оценивается в 8500 петабеккерелей (около 50 тонн ), в том числе в атмосфере 140 ПБк (840 кг ). Количество углерода-14, попавшего в атмосферу и другие среды в результате ядерных испытаний, оценивается в 220 ПБк (1,3 тонны ) .

Распад

6 14 C → 7 14 N + e − + ν ¯ e . {\displaystyle \mathrm {~_{6}^{14}C} \rightarrow \mathrm {~_{7}^{14}N} +e^{-}+{\bar {\nu }}_{e}.}

Скорость распада не зависит от химических и физических свойств окружения. Грамм атмосферного углерода содержит около 1,5×10 −12 г углерода-14 и излучает около 0,6 бета-частиц в секунду за счёт распада этого изотопа. Следует отметить, что с этой же скоростью углерод-14 распадается и в человеческом теле; каждую секунду в организме человека происходит несколько тысяч распадов. Ввиду малой энергии образующихся бета-частиц мощность эквивалентной дозы внутреннего облучения, получаемого по этому каналу (0,01 мЗв /год, или 0,001 бэр /год), невелика по сравнению с мощностью дозы от внутреннего калия-40 (0,39 мЗв/год) . Средняя углерода-14 живой биомассы на суше в 2009 году составляла 238 Бк на 1 кг углерода, близко к значениям до бомбового пика (226 Бк/кг C ; 1950) .

Использование

Радиоизотопное датирование

Углерод-14 постоянно образуется в атмосфере из азота-14 под воздействием космических лучей. Для современного уровня космической активности можно оценить относительное содержание углерода-14 по отношению к «обычному» (углероду-12) в атмосфере как примерно 1:10 12 . Как и обычный углерод , 14 C вступает в реакцию с кислородом , образуя углекислый газ , который нужен растениям в процессе фотосинтеза . Люди и различные животные затем потребляют растения и изготовленные из них продукты в пищу, усваивая таким образом и углерод-14. При этом соотношения концентраций изотопов углерода [ 14 C]: [ 13 C]: [ 12 C] сохраняются практически такими же, как в атмосфере; изотопное фракционирование в биохимических реакциях изменяет эти соотношения лишь на несколько промилле, что может быть учтено .

В умершем живом организме углерод-14 постепенно распадается, а стабильные изотопы углерода остаются без изменений. То есть соотношение изотопов изменяется с течением времени. Это позволило использовать данный изотоп для установления возраста методом радиоизотопного датирования при датировании биоматериалов и некоторых неорганических образцов возраста до 60 000 лет . Наиболее часто используется в археологии, в ледниковой и постледниковой геологии, а также в физике атмосферы, геоморфологии, гляциологии, гидрологии и почвоведении, в физике космических лучей, физике Солнца и в биологии, не только для датировок, но и как трассер различных природных процессов .

В медицине

Используется для определения заражения желудочно-кишечного тракта Helicobacter pylori . Пациенту дают препарат мочевины с содержанием 14 C. В случае инфекции H.pylori бактериальный фермент уреазы разрушает мочевину в аммиак и радиоактивно меченый углекислый газ, который может быть обнаружен в дыхании пациента . Сегодня тест на основе меченых атомов 14 C стараются заменять на тест со стабильным 13 C, который не связан с радиационными рисками.

В России фармпрепараты на основе 14 C производит .

См. также

Примечания

  1. Audi G. , Wapstra A. H. , Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A . - 2003. - Vol. 729 . - P. 337-676 . - DOI :10.1016/j.nuclphysa.2003.11.003 . - Bibcode : 2003NuPhA.729..337A .
  2. Audi G. , Kondev F. G. , Wang M. , Huang W. J. , Naimi S. The Nubase2016 evaluation of nuclear properties (англ.) // Chinese Physics C. - 2017. - Vol. 41 , iss. 3 . - P. 030001-1-030001-138 . - DOI :10.1088/1674-1137/41/3/030001 . - Bibcode : 2017ChPhC..41c0001A .
  3. Burcham W. E. , Goldhaber M. The disintegration of nitrogen by slow neutrons (англ.) // Mathematical Proceedings of the Cambridge Philosophical Society. - 1936. - December (vol. 32 , no. 04 ). - P. 632-636 . - DOI :10.1017/S0305004100019356 .
  4. Kamen, Martin D. (1963). “Early History of Carbon-14: Discovery of this supremely important tracer was expected in the physical sense but not in the chemical sense”. Science . 140 (3567): 584-590. Bibcode :1963Sci...140..584K . DOI :10.1126/science.140.3567.584 . PMID .
  5. Martin David Kamen. «Radiant science, dark politics: a memoir of the nuclear age».
  6. Bé M.M., Chechev V. P. 14 C - Comments on evaluation of decay data (неопр.) . www.nucleide.org . LNHB. Дата обращения 8 июня 2018. Архивировано 22 ноября 2016 года.
  7. Kovaltsov G. A., Mishev A., Usoskin I. G. (2012). “A new model of cosmogenic production of radiocarbon 14 C in the atmosphere”. Earth and Planetary Science Letters . 337-338: 114-120. arXiv :1206.6974 .
Все обо всем. Том 5 Ликум Аркадий

Как используют углерод-14 для определения возраста предметов?

Все живые существа содержат углерод. В их состав также входит небольшое количество углерода-14, радиоактивной разновидности углерода. Используя углерод-14, ученые могут определить возраст дерева, предметов одежды и всего, что было когда-то живым. Использование углерода-14 с этой целью называется установлением возраста радиоактивным путем. Радиоактивный углерод помогает определить возраст предметов, которым до 50 000 лет. Скорость, с которой распадаются радиоактивные элементы, называется периодом полураспада.

Период полураспада - это время, за которое распадается половина атомов элемента. Период полураспада углерода-14 около 5500 лет. Это означает, что через 5500 лет после смерти животного или растения в погибших организмах останется только половина находившегося в них первоначально атомов углерода-14. После 11 000 лет только четверть, через 16 500 лет - восьмая часть изначального количества и так далее.

Предположим, что в древней гробнице обнаружен кусок старого дерева. В лаборатории его можно нагреть и превратить в углерод, или сжечь с выделением различных газов, содержащих углекислый газ. Углерод или углекислый газ содержат несколько атомов углерода-14. Эти атомы распадаются. При распаде крохотные частички с большой скоростью покидают атом. Углерод или углекислый газ помещают в очень чувствительный прибор, который называется счетчиком Гейгера. Он учитывает частички, отдаваемые атомами углерода-14. Исходя из количества этих частичек, ученые делают заключение о количестве углерода-14 в образце.

Ученые знают, какое количество углерода-14 содержится в таком же количестве живого дерева. Сравнивая эту с цифру с количеством углерода-14, оставшегося в древнем образце, ученые называют возраст дерева. Например, если найденное древнее дерево содержит половину от количества атомов углерода-14, содержащегося в живом дереве, то образцу около 5500 лет.

Из книги Большая Советская Энциклопедия (УГ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЧЕ) автора БСЭ

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Как законы Менделя используют в тестах на установление отцовства? Генетики установили, что все четыре группы крови передаются по наследству в полном соответствии с законами Менделя. По всей видимости, существуют три аллели (возможные структурные состояния гена),

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Почему в США (в отличие от России) не используют название «никотиновая кислота»? Ассоциацию американских врачей обеспокоил тот факт, что из-за схожести названий никотиновой кислоты и никотина общественность может решить, что табак является источником витаминов. Поэтому

Из книги Все обо всем. Том 3 автора Ликум Аркадий

Почему для передачи и распределения электрической энергии используют преимущественно переменный ток, а не постоянный? На заре электроэнергетики, когда маломощные генераторы электрического тока располагались на небольших расстояниях от потребителей (нередко в

Из книги 3333 каверзных вопроса и ответа автора Кондрашов Анатолий Павлович

В какой стране наиболее интенсивно используют сталь? В этом отношении лидером является Япония. По статистическим данным, на конец ХХ века в среднем за год расходуется в виде различных изделий (считая арматуру для железобетона, пошедшего на строительство разных

Из книги Все обо всем. Том 5 автора Ликум Аркадий

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Как используют промышленный мусор в Японии? Промышленный мусор в Японии используют весьма оригинально: из него возводят искусственные острова в

Из книги Я познаю мир. Криминалистика автора Малашкина М. М.

Что такое углерод? Углерод - это химический элемент, имеющий чрезвычайно важное значение для любого живого существа. Во всей материи, существующей на Земле, на его долю приходится менее одного процента, однако он содержится в любом организме, живом или уже мертвом. Тело

Из книги Кто есть кто в мире природы автора Ситников Виталий Павлович

Как давно люди используют дерево в качестве строительного материала и топлива? Самое древнее свидетельство применения дерева в качестве строительного материала обнаружено в окрестностях водопада Каламбо в Танзании. Возраст этой находки оценивают приблизительно в 60

Из книги Спецслужбы и войска особого назначения автора Кочеткова Полина Владимировна

Как используют углерод-14 для определения возраста предметов? Все живые существа содержат углерод. В их состав также входит небольшое количество углерода-14, радиоактивной разновидности углерода. Используя углерод-14, ученые могут определить возраст дерева, предметов Из книги автора

Как используют кацусту? В промышленности разные сорта капусты применяют при изготовлении детского питания, производства полуфабрикатов супов, готовых блюд. В домашних условиях капуста незаменима для приготовления разнообразнейших кушаний, входит в состав многих

Из книги автора

«ЕСЛИ ТЫ НЕ ИСПОЛЬЗУЕШЬ ДРУГИХ ЛЮДЕЙ, ОНИ ИСПОЛЬЗУЮТ ТЕБЯ…» Советский представитель в ООН оказался «кротом» ЦРУ Предлагаемые вашему вниманию отрывки из книги «Любовница перебежчика» принадлежат перу Джуди Чейвез - профессиональной проститутки, за услуги которой