Вещества в космосе. Самое тяжелое вещество во вселенной

В то время как «горячими» ядерными процессами в космосе - плазменным состоянием , нуклеогенезом (процессом элементов) внутри звёзд и др. - в основном занимается физика. - новая область знания, получившая значительное развитие во 2-й половине 20 в. главным образом благодаря успехам космонавтики. Ранее исследования химических процессов в космическом пространстве и состава космических тел осуществлялись в основном путём излучения Солнца, звёзд и, отчасти, внешних слоев планет. Этот метод позволил открыть элемент на Солнце ещё до того, как он был обнаружен на Земле. Единственным прямым методом изучения космических тел был и фазового состава различных метеоритов, выпадавших на Землю. Так был накоплен значительный материал, имеющий фундаментальное значение и для дальнейшего развития . Развитие космонавтики, полёты автоматических станций к планетам Солнечной системы - Луне, Венере, Марсу - и, наконец, посещение человеком Луны открыли перед совершенно новые возможности. Прежде всего - это непосредственное исследование Луны при участии космонавтов или путём забора образцов автоматическими (подвижными и стационарными) аппаратами и доставка их на Землю для дальнейшего изучения в химических лабораториях. Кроме того, автоматические спускаемые аппараты сделали возможным изучение и условий его существования в и на поверхности др. планет Солнечной системы, прежде всего Марса и Венеры. Одна из важнейших задач изучение на основе состава и распространённости космических тел, стремление объяснить на химической основе их происхождение и историю. Наибольшее внимание в уделяется проблемам распространённости и распределения . Распространённость в космосе определяется нуклеогенезом внутри звёзд. Химический состав Солнца, планет земного типа Солнечной системы и метеоритов, по-видимому, практически тождествен. Образование ядер связано с различными ядерными процессами в звёздах. Поэтому на разных этапах своей различные звёзды и звёздные системы имеют неодинаковый химический состав. Известны звёзды с особенно сильными спектральными линиями Ва или Mg или Li и др. Распределение по фазам в космических процессах исключительно разнообразно. На агрегатное и фазовое состояние в космосе на разных стадиях его превращений оказывают разностороннее влияние:1) огромный диапазон , от звёздных до абсолютного нуля; 2) огромный диапазон , от миллионов в условиях планет и звёзд до космического ; 3) глубоко проникающие галактическое и солнечное излучения различного состава и интенсивности; 4) излучения, сопровождающие превращения нестабильных в стабильные; 5) магнитное, гравитационное и др. физические поля. Установлено, что все эти факторы влияют на состав внешней коры планет, их газовых оболочек, метеоритного , космической и др. При этом процессы фракционирования в космосе касаются не только атомного, но и изотопного состава. Определение изотопных , возникших под влиянием излучений, позволяет глубоко проникать в историю процессов образования планет, астероидов, метеоритов и устанавливать возраст этих процессов. Благодаря экстремальным условиям в космическом пространстве протекают процессы и встречаются состояния , не свойственные Земле: плазменное состояние звёзд (например, Солнца); конденсирование Не, На, CH 4 , NH 3 и др. легколетучих в больших планет при очень низких ; образование нержавеющего в космическом при на Луне; хондритовая структура каменных метеоритов; образование сложных органических в метеоритах и, вероятно, на поверхности планет (например, Марса). В межзвёздном пространстве обнаруживаются в крайне малых и многих элементов, а также ( , и т. д.) и, наконец, идёт синтез различных сложных (возникающих из первичных солнечных Н, CO, NH 3 , O 2 , N 2 , S и других простых соединений в равновесных условиях при участии излучений). Все эти органические в метеоритах, в межзвёздном пространстве - оптически не активны.

С развитием астрофизики и некоторых др. наук расширились возможности получения информации, относящейся к . Так, поиски в межзвёздной среде ведутся посредством методов радиоастрономии. К концу 1972 в межзвёздном пространстве обнаружено более 20 видов , в том числе несколько довольно сложных органических , содержащих до 7 . Установлено, что наблюдаемые их в 10-100 млн. раз меньше, чем . Эти методы позволяют также посредством сравнения радиолиний изотопных разновидностей одной (например, H 2 12 CO и H 2 13 CO) исследовать изотопный состав межзвёздного и проверять правильность существующих теорий происхождения .

Исключительное значение для познания космоса имеет изучение сложного многостадийного процесса низкотемпературной , например перехода солнечного в твёрдое планет Солнечной системы, астероидов, метеоритов, сопровождающегося конденсационным ростом, аккрецией (увеличением массы, «нарастанием» любого путём добавления частиц извне, например из газопылевого облака) и агломерацией первичных агрегатов (фаз) при одновременной потере летучих в космического пространства. В космическом , при относительно низких (5000-10000 °С), из остывающей последовательно выпадают твёрдые фазы разного химического состава (в зависимости от ), характеризующиеся различными энергиями связи, окислительными потенциалами и т. п. Например, в хондритах различают силикатную, металлическую, сульфидную, хромитную, фосфидную, карбидную и др. фазы, которые агломерируются в какой-то момент их истории в каменный метеорит и, вероятно, подобным же образом и в планет земного типа.

Далее в планетах происходит процесс дифференциации твёрдого, остывающего на оболочки - металлическое ядро, силикатные фазы (мантию и кору) и - уже в результате вторичного разогревания планет теплотой радиогенного происхождения, выделяющейся при распаде радиоактивных , и и, возможно, других элементов. Такой процесс выплавления и при вулканизме характерен для Луны, Земли, Марса, Венеры. В его основе лежит универсальный принцип зонного , разделяющего легкоплавкое (например, коры и ) от тугоплавкого мантии планет. Например, первичное солнечное CaSiO 3 + CO 2 достигает равновесного состояния, при котором в ней содержится 97% CO 2 при 90 атм. Пример Луны говорит о том, что вторичные (вулканические) не удерживаются небесным телом, если его масса невелика.

Соударения в космическом пространстве (либо между частицами метеоритного , либо при налёте метеоритов и др. частиц на поверхность планет) благодаря огромным космическими скоростям движения могут вызвать тепловой , оставляющий следы в структуре твёрдых космических тел, и образование метеоритных кратеров. Между космическими телами происходит . Например, по минимальной оценке, на Землю ежегодно выпадает не меньше 1× в другие, а в общем случае - к изменению изотопного или атомного состава »,1971, в. 11; Аллер Л. Х., пер. с англ., М., 1963; Сиборг Г. Т., Вэленс Э. Г., Элементы Вселенной, пер. с англ., 2 изд., М., 1966; Merrill P. W., Space chemistry, Ann Arbor, 1963; Spitzer L., Diffuse matter in space, N. Y.,1968; Snyder L. E., Buhl D., Molecules in the interstellar medium, «Sky and Telescope», 1970, v. 40, p. 267, 345.

Осмий на сегодня определён как самое тяжёлое вещество на планете. Всего один кубический сантиметр этого вещества весит 22.6 грамма. Он был открыт в 1804 году английским химиком Смитсоном Теннантом, при растворении золота в После в пробирке остался осадок. Это произошло из-за особенности осмия, он нерастворим в щелочах и кислотах.

Самый тяжёлый элемент на планете

Представляет собой голубовато-белый металлический порошок. В природе встречается в виде семи изотопов, шесть из них стабильны и один неустойчив. По плотности немного превосходит иридий, который имеет плотность 22,4 грамма на кубический сантиметр. Из обнаруженных на сегодня материалов, самое тяжёлое вещество в мире - это осмий.

Он относится к группе таких как лантан, иттрий, скандий и других лантаноидов.

Дороже золота и алмазов

Добывается его очень мало, порядка десяти тысяч килограмм в год. Даже в наиболее большом источнике осмия, Джезказганском месторождении, содержится порядка трёх десятимиллионных долей. Биржевая стоимость редкого металла в мире достигает порядка 200 тысяч долларов за один грамм. При этом максимальная чистота элемента в процессе очистки около семидесяти процентов.

Хотя в российских лабораториях удалось получить чистоту 90,4 процента, но количество металла не превышало нескольких миллиграмм.

Плотность материи за пределами планеты Земля

Осмий, бесспорно, является лидером самых тяжёлых элементов нашей планеты. Но если мы обратим свой взор в космос, то нашему вниманию откроется множество веществ более тяжёлых, чем наш «король» тяжёлых элементов.

Дело в том, что во Вселенной существуют условия несколько другие, чем на Земле. Гравитация ряда настолько велика, что вещество неимоверно уплотняется.

Если рассмотреть структуру атома, то обнаружится, что расстояния в межатомном мире чем-то напоминают видимый нами космос. Где планеты, звезды и прочие находятся на достаточно большой дистанции. Остальное же занимает пустота. Именно такую структуру имеют атомы, и при сильной гравитации эта дистанция достаточно сильно уменьшается. Вплоть до «вдавливания» одних элементарных частиц в другие.

Нейтронные звезды - сверхплотные объекты космоса

В поисках за пределами нашей Земли мы сможем обнаружить самое тяжёлое вещество в космосе на нейтронных звёздах.

Это достаточно уникальные космические обитатели, один из возможных типов эволюции звёзд. Диаметр таких объектов составляет от 10 до 200 километров, при массе равной нашему Солнцу или в 2-3 раза больше.

Это космическое тело в основном состоит из нейтронной сердцевины, которая состоит из текучих нейтронов. Хотя по некоторым предположениям учёных она должна находиться в твёрдом состоянии, достоверной информации на сегодня не существует. Однако известно, что именно нейтронные звезды, достигая своего передела сжатия, впоследствии превращаются в с колоссальным выбросом энергии, порядка 10 43 -10 45 джоулей.

Плотность такой звезды сравнима, к примеру, с весом горы Эверест, помещённой в спичечный коробок. Это сотни миллиардов тонн в одном кубическом миллиметре. К примеру, чтобы стало более понятно, насколько велика плотность вещества, возьмём нашу планету с её массой 5,9×1024 кг и «превратим» в нейтронную звезду.

В результате, чтобы сравнялась с плотностью нейтронной звезды, её нужно уменьшить до размеров обычного яблока, диаметром 7-10 сантиметров. Плотность уникальных звёздных объектов увеличивается с перемещением к центру.

Слои и плотность вещества

Наружный слой звезды представлен собой в виде магнитосферы. Непосредственно под ней плотность вещества уже достигает порядка одной тонны на сантиметр кубический. Учитывая наши знания о Земле, на данный момент, это самое тяжёлое вещество из обнаруженных элементов. Но не спешите с выводами.

Продолжим наши исследования уникальных звёзд. Их называют также пульсарами, из-за высокой скорости вращения вокруг своей оси. Этот показатель у различных объектов колеблется от нескольких десятков до сотен оборотов в секунду.

Проследуем далее в изучении сверхплотных космических тел. Затем следует слой, который имеет характеристики металла, но, скорее всего, он похож по поведению и структуре. Кристаллы намного меньше, чем мы видим в кристаллической решётке Земных веществ. Чтобы выстроить линию из кристаллов в 1 сантиметр, понадобится выложить более 10 миллиардов элементов. Плотность в этом слое в один миллион раз выше, чем в наружном. Это не самое тяжёлое вещество звезды. Далее следует слой, богатый нейтронами, плотность которого в тысячу раз превышает предыдущий.

Ядро нейтронной звезды и его плотность

Ниже находится ядро, именно здесь плотность достигает своего максимума - в два раза выше, чем вышележащий слой. Вещество ядра небесного тела состоит из всех известных физике элементарных частиц. На этом мы достигли конца путешествия к ядру звезды в поисках самого тяжёлого вещества в космосе.

Миссия в поисках уникальных по плотности веществ во Вселенной, казалось бы, завершена. Но космос полон загадок и неоткрытых явлений, звёзд, фактов и закономерностей.

Чёрные дыры во Вселенной

Следует обратить внимание, на то, что сегодня уже открыто. Это чёрные дыры. Возможно, именно эти загадочные объекты могут быть претендентами на то, что самое тяжёлое вещество во Вселенной - их составляющая. Обратите внимание, что гравитация чёрных дыр настолько велика, что свет не может её покинуть.

По предположениям учёных, вещество, затянутое в область пространства времени, уплотняется настолько, что пространства между элементарными частицами не остаётся.

К сожалению, за горизонтом событий (так называется граница, где свет и любой объект, под действием сил гравитации, не может покинуть чёрную дыру) следуют наши догадки и косвенные предположения, основанные на выбросах потоков частиц.

Ряд учёных предполагают, что за горизонтом событий смешиваются пространство и время. Существует мнение, что они могут являться «проходом» в другую Вселенную. Возможно, это соответствует истине, хотя вполне возможно, что за этими пределами открывается другое пространство с совершенно новыми законами. Область, где время поменяется «местом» с пространством. Местонахождение будущего и прошлого определяется всего лишь выбором следования. Подобно нашему выбору идти направо или налево.

Потенциально допустимо, что во Вселенной существуют цивилизации, которые освоили путешествия во времени через чёрные дыры. Возможно, в будущем люди с планеты Земля откроют тайну путешествий сквозь время.

— Зверь и птица, звёзды и камень — все мы одно, все одно... — бормотала Кобра, опустив свой клобук и тоже раскачиваясь. — Змея и ребёнок, камень и звезда — все мы одно...

Памела Треверс. «Мэри Поппинс»

Чтобы установить распространённость химических элементов во Вселенной, нужно определить состав её вещества. А оно сосредоточено не только в крупных объектах — звёздах, планетах и их спутниках, астероидах, кометах. Природа, как известно, не терпит пустоты, поэтому и космическое пространство заполнено межзвёздными газом и пылью. К сожалению, нам для непосредственного изучения доступно лишь земное вещество (и только то, которое «под ногами») да очень небольшое количество лунного грунта и метеориты — обломки некогда существовавших космических тел.

Как же определить химический состав объектов, удалённых от нас на тысячи световых лет? Получать всю необходимую для этого информацию стало возможным после разработки в 1859 г. немецкими учёными Густавом Кирхгофом и Робертом Бунзеном метода спектрального анализа. А в 1895 г. профессор Вюрцбургского университета Вильгельм Конрад Рентген случайно обнаружил неизвестное излучение, которое учёный назвал Х-лучами (ныне они известны как рентгеновские). Благодаря этому открытию появилась рентгеновская спектроскопия, которая позволяет непосредственно по спектру определять порядковый номер элемента.

В основе спектрального и рентгеноспектрального анализа лежит способность атомов каждого химического элемента излучать или поглощать энергию в виде волн строго определённой, только ему одному свойственной длины, что и улавливают специальные приборы — спектрометры. Атом испускает волны видимого света при переходах электронов на внешних уровнях, а за рентгеновское излучение отвечают более «глубинные» электронные слои. По интенсивности определённых линий в спектре и узнают содержание элемента в том или ином небесном теле.

К концу XX в. исследованы спектры многих объектов во Вселенной, накоплен огромный статистический материал. Разумеется, данные о химическом составе космических тел и межзвёздного вещества не окончательны и постоянно уточняются, но благодаря уже собранным сведениям удалось установить среднее содержание элементов в космосе.

Все тела во Вселенной состоят из атомов одних и тех же химических элементов, но содержание их в разных объектах различно. При этом наблюдаются интересные закономерности. Лидеры по распространённости — водород (его атомов в космосе — 88,6 %) и гелий (11,3 %). На долю остальных элементов приходится всего 1 %! В звёздах и планетах распространены также углерод, азот, кислород, неон, магний, кремний, сера, аргон и железо. Таким образом, лёгкие элементы преобладают. Но есть и исключения. Среди них — «провал» в области лития, бериллия и бора и низкое содержание фтора и скандия, причина которого до сих пор не установлена.

Выявленные закономерности можно представить в виде графика. Внешне он напоминает старую пилу, зубья которой сточились по-разному, а некоторые вообще сломались. Верхушки зубьев соответствуют элементам с чётными порядковыми номерами (т. е. тем, у которых количество протонов в ядрах чётное). Данная закономерность носит название правила Олдо — Харкинса в честь итальянского химика Джузеппе Оддо (1865—1954) и американского физика и химика Уильяма Харкинса (1873— 1951). Согласно этому правилу, распространённость элемента с чётным зарядом больше, чем его соседей с нечётным количеством протонов в ядре. Если же у элемента и количество нейтронов чётное, то он встречается ещё чаше и изотопов образует больше. Во Вселенной существует 165 стабильных изотопов, у которых и число нейтронов, и число протонов чётное; 56 изотопов с чётным числом протонов и нечётным — нейтронов; 53 изотопа, у которых число нейтронов чётное, а протонов — нечётное; и всего 8 изотопов с нечётным количеством и нейтронов, и протонов.

Бросается в глаза и ещё один максимум, приходящийся на железо — один из наиболее распространённых элементов. На графике его зубец возвышается, как Эверест. Это связано с большой энергией связи в ядре железа — самой высокой среди всех химических элементов.

А вот и сломанный зуб у нашей пилы — на графике нет значения распространённости технеция, элемента № 43, вместо него здесь пробел. Казалось бы, что в нём такого особенного? Технеций находится в середине периодической системы, распространённость его соседей подчиняется общим закономерностям. А дело вот в чём: этот элемент просто-напросто давно «закончился», период полураспада его самого долгоживущего изотопа 2,12.10 6 лет. Технеций даже не был открыт в традиционном понимании этого слова: его синтезировали искусственно в 1937 г., и то случайно. Но вот что интересно: в 1960 г. в спектре Солнца была обнаружена линия «несуществующего» элемента № 43! Это блестящее подтверждение того факта, что синтез химических элементов в недрах звёзд продолжается и поныне.

Второй сломанный зуб — отсутствие на графике прометия (№ 61), и объясняется оно теми же причинами. Период полураспада самого устойчивого изотопа этого элемента очень мал, всего 18 лет. И пока нигде в космосе он не дал о себе знать.

Совсем нет на графике и элементов с порядковыми номерами больше 83: все они тоже очень нестабильны, и в космосе их исключительно мало.

Бесконечно разнообразные живые организмы состоят из ограниченного набора атомов, появлением которого мы в значительной степени обязаны звездам. Самое мощное событие в жизни Вселенной - Большой Взрыв - заполнило наш мир веществом весьма скудного химического состава.
Считается, что объединение нуклонов (протонов и нейтронов) в расширяющемся пространстве не успело продвинуться дальше гелия. Поэтому догалакгическая Вселенная была заполнена почти исключительно ядрами водорода (то есть попросту протонами) с небольшой - примерно четверть по массе - добавкой ядер гелия (альфа-частиц). Больше в ней, не считая легких электронов, не было практически ничего. Как именно происходило первичное обогащение Вселенной ядрами более тяжелых элементов, мы пока сказать не можем. По сей день не обнаружена ни одна «первичная» звезда, то есть объект, состоящий только из водорода и гелия. Существуют специальные программы поиска звезд с низким содержанием металлов (напомним, что астрономы условились называть «металлами» все элементы тяжелее гелия), и эти программы показывают, что звезды «экстремально низкой металличности» в нашей Галактике крайне редки. Они есть, у некоторых рекордных экземпляров содержание, например, железа уступает солнечному в десятки тысяч раз. Однако таких звезд - единицы, и вполне может оказаться, что «в их лице» мы имеем дело не с «почти первичными» объектами, а просто с какой-то аномалией. В целом же даже в самых старых звездах Галактики содержатся изрядные количества углерода, азота, кислорода и более тяжелых атомов. Это означает, что даже наиболее древние галактические светила - в действительности не первые: до них во Вселенной уже имелись какие-то «фабрики» по производству химических элементов.

Европейская инфракрасная космическая обсерватория Herschel обнаружила в БТО спектральные «отпечатки» органических молекул. На этом изображении на инфракрасный снимок Туманности Ориона, полученный космическим телескопом Spitzer (NASA), наложен ее спектр, снятый спектрографом высокого разрешения HIFI обсерватории Herschel. Он наглядно демонстрирует ее насыщенность сложными молекулами: в спектре легко отождествляются линии воды, моноксида углерода и диоксида серы, а также органических соединений - формальдегида, метанола, диметилового эфира, синильной кислоты и их изотопных аналогов. Неподписанные пики принадлежат многочисленным пока не идентифицированным молекулам.

Сейчас считается, что такими фабриками могли быть сверхмассивные звезды так называемого населения третьего (III) типа. Дело в том, что тяжелые элементы - не просто «приправа» к водороду и гелию. Это важные участники процесса звездообразования, которые позволяют сжимающемуся протозвездному газовому сгустку сбрасывать тепло, выделяющееся при сжатии. Если лишить его такого теплоотвода, он попросту не сможет сжаться - то есть не сможет стать звездой... Точнее, сможет, но только при условии, что его масса очень велика - в сотни и тысячи раз больше, чем у современных звезд. Поскольку звезда живет тем меньше, чем больше ее масса, первые гиганты существовали очень недолго. Они прожили короткие яркие жизни и взорвались, не оставив никакого следа, кроме атомов тяжелых элементов, успевших синтезироваться в их недрах или образовавшихся непосредственно при взрывах.
В современной Вселенной практически единственным поставщиком тяжелых элементов является звездная эволюция. В наиболее значительной степени таблицу Менделеева «заполняют», скорее всего, звезды, масса которых превышает солнечную более чем на порядок. Если на Солнце и других подобных светилах термоядерный синтез в ядре не заходит дальше кислорода, то более массивные объекты в процессе эволюции приобретают «луковичную» структуру: их ядра окружены слоями, и чем глубже слой - тем более тяжелые ядра в нем синтезируются. Здесь цепочка термоядерных превращений заканчивается уже не кислородом, а железом, с образованием промежуточных ядер - неона, магния, кремния, серы и других.

Большая Туманность Ориона (БТО) - одна из ближайших областей звездообразования, содержащая большие количества газа, пыли и новорожденных звезд. Одновременно эта туманность является одной из крупнейших «химических фабрик» в нашей Галактике, причем ее истинная «мощность», равно как и пути синтеза в ней молекул межзвездного вещества, астрономам пока не совсем понятны. Это изображение получено с помощью Камеры широкого поля (Wide Field Imager Camera), установленной на 2,2-метровом телескопе MPG/ES0 обсерватории Ла Силья в Чили.
ОРГАНИЧЕСКИЕ МОЛЕКУЛЫ В КОСМОСЕ

Чтобы обогатить Вселенную этой смесью, мало синтезировать атомы - нужно еще и выбросить их в межзвездное пространство. Это происходит при вспышке сверхновой: когда у звезды образуется железное ядро, она теряет устойчивость и взрывается, разбрасывая вокруг себя часть продуктов термоядерного синтеза. Попутно в разлетающейся оболочке происходят реакции, порождающие ядра тяжелее железа. К похожему результату приводят и вспышки сверхновых другого типа - термоядерные взрывы на белых карликах, масса которых из-за перетекания вещества со звезды-спутника или благодаря слиянию с другим белым карликом становится больше предела Чандрасекара (1,4 солнечной массы).
В обогащение Вселенной рядом элементов - в том числе углеродом и азотом, необходимыми для синтеза органических молекул - заметный вклад вносят также менее массивные звезды, заканчивающие свою жизнь образованием белого карлика и расширяющейся планетарной туманности. На завершающем этапе эволюции в их оболочках также начинают происходить ядерные реакции, усложняющие элементный состав вещества, позже выбрасываемого в космическое пространство.
В итоге межзвездное вещество Галактики, и по сей день состоящее в основном из водорода и гелия, оказывается загрязненным (или обогащенным - это уж как посмотреть) атомами более тяжелых элементов.

Букминстерфуллерены (сокращённо «фуллерены» или «букиболы») - крохотные сферические структуры, состоящие из четного числа (но не менее 60) углеродных атомов, соединенных в подобие узора футбольного мяча - впервые были обнаружены в спектрах планетарной туманности в Малом Магеллановом Облаке (ММО), одной из ближайших к нашей Галактике звездных систем. Открытие совершила в июле 2010 г. рабочая группа космического телескопа Spitzer (NASA), ведущего наблюдения в инфракрасном диапазоне. Общая масса содержащихся в туманности фуллеренов всего в пять ра? меньше массы Земли. На фоне снимка ММО, сделанного телескопом Spitzer, показано увеличенное изображение планетарной туманности (меньшая врезка) и найденных в ней молекул фуллерена (большая врезка), состоящих из 60 атомов углерода. К настоящему времени уже получены сообщения о регистрации характерных линий подобных молекул в спектрах объектов, расположенных в пределах Млечного Пути.
ОРГАНИЧЕСКИЕ МОЛЕКУЛЫ В КОСМОСЕ

Эти атомы переносятся общими «течениями» галактического газа, вместе с ним сгущаются в молекулярные облака, попадают в протозвездные сгустки и протопланетные диски... чтобы в конечном итоге стать частью планетных систем и тех существ, которые их населяют. По крайней мере, один пример такой обитаемой планеты нам известен вполне достоверно.

Органика из неорганики


Земная жизнь - во всяком случае, с научной точки зрения - основана на химии и представляет собою цепочку взаимопревращений молекул. Правда, не каких-нибудь, а весьма сложных, но все-таки молекул - комбинаций атомов углерода, водорода, кислорода, азота, фосфора и серы (и пары десятков реже встречающихся элементов) в различных пропорциях. Сложность даже самых примитивных «живых» молекул долгое время мешала распознать в них обычные химические соединения. Существовало представление о том, что вещества, входящие в состав живых организмов, наделены особым качеством - «жизненной силой», поэтому заниматься их изучением должна специальная отрасль науки - органическая химия.
Одним из переломных моментов в истории химии считаются опыты Фридриха Вёлера (Friedrich Wohler), который в 1828 г. впервые синтезировал мочевину - органическое вещество - из неорганического (цианата аммония). Эти опыты стали первым шагом на пути к важнейшей концепции - признанию возможности зарождения жизни из «неживых» ингредиентов. В конкретных химических терминах ее впервые сформулировал в начале 1920-х годов советский биолог Александр Опарин. По его мнению, средой для возникновения жизни на Земле стала смесь простых молекул (аммиака, воды, метана и пр.), известная сейчас как «первичный бульон». В нем под воздействием внешних «впрысков» энергии (например, молний) небиологическим путем синтезировались простейшие органические молекулы, которые затем за очень длительный срок «собрались» в высокоорганизованные живые существа.

Экспериментальным доказательством возможности органического синтеза в «первичном бульоне» в начале 1950-х годов стали знаменитые опыты Хэролда Юри и Стэнли Миллера (Harold Urey, Stanley Miller), заключавшиеся в пропускании электрических разрядов сквозь смесь перечисленных выше молекул. Через пару недель эксперимента в этой смеси находили богатый ассортимент органики, включая простейшие аминокислоты и сахара. Эта наглядная демонстрация простоты абиогенеза имела отношение не только к проблеме происхождения земной жизни, но и к более масштабной проблеме жизни во Вселенной: поскольку никакие экзотические условия для синтеза органики на молодой Земле не требовались, логично было бы допустить, что подобные процессы имели место (или будут иметь место) на других планетах.

Поиски признаков жизни


Если до середины XX века в качестве наиболее вероятного места обитания «братьев по разуму» рассматривался фактически только Марс, то после окончания Второй мировой войны установление контактов на межзвездных расстояниях стало казаться делом ближайшего будущего. Именно в то время зародились основы новой науки, находящейся на стыке астрономии и биологии. Ее называют по-разному - экзобиология, ксенобиология, биоастрономия - но чаще всего употребляется название «астробиология». И одним из самых неожиданных астробиологических открытий за последние десятилетия стало осознание того факта, что простейшим «кирпичикам» жизни не было необходимости синтезироваться на Земле из неживой материи, в «первичном бульоне». Они могли попадать на нашу планету уже в готовом состоянии, ибо органические молекулы, как выяснилось, в изобилии присутствуют не только на планетах, но и - чего изначально даже не подозревали - в межзвездном газе.
Мощнейшим инструментом для изучения внеземного вещества является спектральный анализ. Он основан на том, что электроны в атоме находятся в состояниях - или, как принято говорить, занимают уровни - со строго определенными энергиями, и переходят с уровня на уровень, излучая или поглощая фотон, энергия которого равна разности энергий начального и конечного уровня. Если атом находится между наблюдателем и каким-либо источником света (например, фотосферой Солнца), он будет «выедать» из спектра этого источника только фотоны определенных частот, способные вызывать переходы электронов между энергетическими уровнями данного атома. В спектре на этих частотах появятся темные провалы - линии поглощения. Поскольку набор уровней индивидуален не только для каждого атома, но и для каждого иона (атома, лишенного одного или нескольких электронов), по набору спектральных линий можно надежно установить, какие именно атомы их породили. Например, по линиям в спектре Солнца и других звезд можно узнать, из чего состоят их атмосферы.
В 1904 г. Йоханнес Хартман (Johannes Hartmann) первым установил важный факт: не все линии в спектрах звезд возникают в звездных атмосферах. Некоторые из них порождаются атомами, находящимися гораздо ближе к наблюдателю - не возле звезды, а в межзвездном пространстве. Так были впервые обнаружены признаки существования межзвездного газа (точнее, только одного из его компонентов - ионизированного кальция).
Нельзя сказать, что это стало шокирующим открытием. В конце концов, почему бы в межзвездной среде (МЗС) не находиться ионизированному кальцию? Но мысль о том, что в ней могут присутствовать не только ионизированные и нейтральные атомы различных элементов, но и молекулы, долгое время казалась фантастической. МЗС в то время считалась местом, непригодным для синтеза хоть сколько-нибудь сложных соединений: крайне низкие плотности и температуры должны замедлять скорости химических реакций в ней практически до нуля. А если вдруг какие-то молекулы там все же появятся, они немедленно снова распадутся на атомы под действием света звезд.
Поэтому между открытием межзвездного газа и признанием существования межзвездных молекул прошло более 30 лет. В конце 1930-х годов в ультрафиолетовой области спектра были найдены линии поглощения МЗС, которые поначалу не удавалось приписать какому-либо химическому элементу. Объяснение оказалось простым и неожиданным: эти линии принадлежат не отдельным атомам, а молекулам - простейшим двухатомным соединениям углерода (СН, CN, СН+). Дальнейшие спектральные наблюдения в оптическом и ультрафиолетовом диапазонах позволили обнаружить линии поглощения свыше десятка межзвездных молекул.

«Подсказка» радиоастрономии


Подлинный расцвет исследований межзвездного «химического ассортимента» начался после появления радиотелескопов. Дело в том, что энергетические уровни в атоме - если не вдаваться в подробности - связаны только с движением электронов вокруг ядра, но у молекул, объединяющих несколько атомов, имеются дополнительные «движения», отражающиеся в спектре: молекула может вращаться, вибрировать, закручиваться... И с каждым из этих движении связана энергия, которая, как и энергия электрона, может иметь лишь фиксированный набор значений. Различные состояния молекулярного вращения или колебания тоже называются «уровнями». При переходе с уровня на уровень молекула также излучает или поглощает фотон. Важное отличие состоит в том, что энергии вращательных и колебательных уровней сравнительно близки. Поэтому их разность невелика, и фотоны, поглощаемые либо излучаемые молекулой при переходе с уровня на уровень, попадают не в ультрафиолетовый и даже не в видимый диапазон, а в инфракрасный (колебательные переходы) и в радиодиапазон (вращательные переходы).

Советский астрофизик Иосиф Шкловский первым обратил внимание на то, что спектральные линии излучения молекул нужно искать в радиодиапазоне. Конкретно он писал про молекулу (точнее, свободный радикал) гидроксила ОН, которая при определенных условиях становится источником радиоизлучения на длине волны 18 см, очень удобной для наблюдений с Земли. Именно гидроксил и стал первой молекулой в МЗС, обнаруженной в 1963 г. в ходе радионаблюдений и дополнившей список уже известных двухатомных межзвездных молекул.
Но дальше стало интереснее. В 1968 г. были опубликованы результаты наблюдений трех- и четырехатомных молекул - воды и аммиака (Н 2 0, NH 3). А годом позже появилось сообщение об открытии в МЗС первой органической молекулы - формальдегида (Н 2 СO). С тех пор астрономы открывают по нескольку новых межзвездных молекул ежегодно, так что сейчас полное их число превысило две сотни. Конечно, доминируют в этом списке простые соединения, включающие от двух до четырех атомов, но значительную часть (более трети) составляют многоатомные молекулы.
Добрую половину многоатомных межзвездных соединений в земных условиях мы однозначно отнесли бы к органике: формальдегид, диметиловый эфир, метиловый и этиловый спирт, этиленгликоль, метилформиат, уксусная кислота... Самая «длинная» молекула из числа открытых в МЗС была найдена в 1997 г. в одном из плотных сгустков молекулярного облака ТМС-1 в созвездии Тельца. Для Земли это не очень обычное соединение из семейства цианополиинов, представляющее собой цепочку из 11 атомов углерода, к одному концу которой «прикреплен» атом водорода, к другому - атом азота. В этом же сгустке обнаружены и другие органические молекулы, но по каким-то причинам он особенно богат именно молекулами цианополиинов с углеродными цепочками различной длины (3, 5, 7, 9, 11 атомов), за что получил название «цианополииновый пик».
Еще один известный объект с богатым «органическим содержанием» - молекулярное облако Sgr B2(N), расположенное вблизи центра нашей Галактики в направлении созвездия Стрельца. В нем открыто особенно много сложных молекул. Однако оно не обладает в этом отношении какой-то исключительностью - скорее, тут срабатывает эффект «поиска под фонарем». Обнаружение новых молекул, особенно органических - очень сложная задача, и наблюдатели зачастую предпочитают направлять телескопы на те участки неба, которые с большей вероятностью сулят успех. Поэтому мы очень много знаем о концентрации органики в молекулярных облаках Тельца, Ориона, Стрельца, и почти не располагаем информацией о содержании сложных молекул во многих других подобных облаках. Но это отнюдь не значит, что органики там нет - просто до этих объектов еще «антенны не дошли».

Трудности расшифровки


Здесь необходимо пояснить, что в данном случае означает «сложность». Даже элементарный анализ звездных спектров - весьма непростая задача. Да, набор линий каждого атома и иона строго индивидуален, но в спектре звезды друг на друга накладываются линии многих десятков элементов, и «рассортировать» их бывает очень нелегко. В случае же спектров органических молекул ситуация осложняется сразу по нескольким направлениям. Большинство многочисленных линий излучения (поглощения) атомов и ионов попадает в узкий спектральный диапазон, доступный для наблюдений с Земли. У сложных молекул количество линий также исчисляется тысячами, но эти линии «разбросаны» значительно шире - от ближнего ИК-диапазона (единицы и десятки микрометров) до радиодиапазона (десятки сантиметров).
Допустим, мы хотим доказать, что в молекулярном облаке имеется молекула акрилонитрила (CH 2 CHCN). Для этого нужно, во-первых, знать, в каких линиях излучает эта молекула. Но для многих соединений такие данные отсутствуют! Теоретические методы далеко не всегда позволяют рассчитать положение линий, а в лаборатории спектр молекулы зачастую не удается измерить, например, потому, что ее сложно выделить в чистом виде. Во-вторых, необходимо рассчитать относительные интенсивности этих линий. Их яркость зависит от свойств молекулы и от параметров среды (температуры, плотности и пр.), в которой она находится. Теория позволит предсказать, что в исследуемом молекулярном облаке линия на одной длине волны должна быть в три раза ярче линии той же молекулы на другой длине волны. Если найдены линии на нужных длинах волн, но с неправильным отношением интенсивностей - это весомый повод усомниться в правильности их идентификации. Разумеется, для уверенного обнаружения молекулы нужно провести наблюдения облака в максимально широком спектральном диапазоне. Но значительная часть электромагнитного излучения из космоса не достигает поверхности Земли! Значит, приходится либо наблюдать спектр молекулы фрагментарно в «окнах прозрачности» земной атмосферы, что, конечно, не добавляет надежности полученным результатам, либо использовать космический телескоп, что удается сделать крайне редко. Наконец, не стоит забывать, что линии искомой молекулы придется выделять среди других молекул, которых там десятки разновидностей, и у каждой - тысячи линий...
Неудивительно поэтому, что к отождествлению некоторых «представителей» космической органики астрономы идут годами. Показательна в этом отношении история обнаружения в МЗС глицина - простейшей аминокислоты. Хотя сообщения о регистрации в спектрах молекулярных облаков характерных признаков этой молекулы появлялись неоднократно, факт ее наличия все еще не является общепризнанным: хотя многие линии, как будто бы принадлежащие глицину, реально наблюдаются, другие его ожидаемые линии в спектрах отсутствуют, что дает повод усомниться в идентификации.

Лаборатории межзвездного синтеза


Но все это - сложности наблюдений. В теории за последние десятилетия ситуация с межзвездным органическим синтезом существенно прояснилась, и теперь мы четко понимаем, что первоначальные представления о химической инертности МЗС были неверны. Для этого, конечно, пришлось предварительно многое узнать о ее составе и физических свойствах. Значительная доля объема межзвездного пространства действительно «стерильна». Она заполнена очень горячим и разреженным газом с температурами от тысяч до миллионов кельвинов и пронизана жестким высокоэнергетическим излучением. Но попадаются в Галактике и отдельные конденсации межзвездного вещества, где температура низка (от единиц до десятков кельвинов), а плотность - заметно выше средней (сотни и более частиц на кубический сантиметр). Газ в этих конденсациях перемешан с пылью, которая эффективно поглощает жесткое излучение, в результате чего их внутреннее пространство - холодное, плотное, темное - оказывается удобным местом для протекания химических реакций и накопления молекул. В основном такие «космические лаборатории» встречаются в уже упоминавшихся молекулярных облаках. Совокупно они занимают меньше процента общего объема галактического диска, но в них сосредоточена примерно половина массы межзвездной материи Млечного Пути.

Полицикяические ароматические углеводороды (ПАУ) - наиболее сложные соединения, обнаруженные в межзвездном пространстве. На этом инфракрасном снимке области звездообразования в созвездии Кассиопеи показаны структуры молекул некоторых из них (атомы водорода - белые, углерода - серые, кислорода -красные), а также несколько их характерных спектральных линий. Ученые полагают, что в ближайшем будущем спектры ПАУ будут иметь особую ценность для расшифровки химического состава межзвездной среды методами инфракрасной спектроскопии.
ОРГАНИЧЕСКИЕ МОЛЕКУЛЫ В КОСМОСЕ

Элементный состав молекулярных облаков напоминает состав Солнца. В основном они состоят из водорода - точнее, молекул водорода Н 2 с небольшой «добавкой» гелия. Остальные элементы присутствуют на уровне незначительных примесей с относительным содержанием около 0,1% (для кислорода) и ниже. Соответственно и молекул, включающих эти примесные атомы, тоже очень мало по отношению к самой распространенной молекуле Н 2 . Но почему эти молекулы вообще образуются? На Земле для химического синтеза используются специальные установки, обеспечивающие достаточно высокие плотности и температуры. Как работает межзвездный «химический реактор» - холодный и разреженный?
Здесь нужно помнить, что астрономия имеет дело с другими масштабами времени. На Земле нам нужно получить результат быстро. Природа же никуда не торопится. Синтез межзвездной органики занимает сотни тысяч и миллионы лет. Но даже для таких медленно протекающих реакций необходим катализатор. В молекулярных облаках его роль играют частицы космических лучей. Первым шагом к синтезу сложных органических молекул можно считать формирование связи С-Н. Но если просто взять смесь молекул водорода и атомов углерода - эта связь сама по себе образовываться не будет. Другое дело - если часть атомов и молекул каким-то образом превратить в ионы. Химические реакции с участием ионов протекают куда быстрее. Именно эту начальную ионизацию и обеспечивают космические лучи, инициируя цепочку взаимодействий, в ходе которых атомы тяжелых элементов (углерода, азота, кислорода) начинают «прицеплять» к себе атомы водорода, образуя простые молекулы, в том числе и обнаруженные в МЗС в первую очередь (СН и СН+).
Дальнейший синтез идет еще легче. Двухатомные молекулы присоединяют к себе новые атомы водорода, превращаясь втрех- и четырехатомные (СН 2 +, СН 3 +), многоатомные молекулы начинают реагировать между собой, трансформируясь в более сложные соединения - ацетилен, синильную кислоту (HCN), аммиак, формальдегид, которые, в свою очередь, становятся «кирпичиками» для синтеза комплексной органики.
После того, как космические лучи дали первичный толчок химическим реакциям, важным катализатором межзвездного органического синтеза становятся частицы космической пыли. Они не только защищают внутренние области молекулярных облаков от разрушительного излучения, но и предоставляют свою поверхность для эффективного «производства» многих неорганических и органических молекул. В совокупности реакций нетрудно представить себе образование не только глицина, но и более сложных соединений. В этом смысле можно сказать, что задача обнаружения простейшей аминокислоты имеет скорее спортивный смысл: кто первым уверенно найдет ее в космосе. В том, что глицин в молекулярных облаках присутствует, ученые не сомневаются.

Как выжить «молекулам жизни»


В общем, на данный момент можно считать доказанным, что для синтеза органики не обязателен «первичный бульон». Природа прекрасно справляется с этой задачей и в космическом пространстве. Но имеет ли межзвездная органика какое-то отношение к появлению жизни? Действительно, звезды и планетные системы образуются в молекулярных облаках и, естественно, «вбирают» их вещество. Однако прежде, чем стать планетой, это вещество проходит через достаточно жесткие условия протопланетного диска и не менее жесткие условия молодой Земли. К сожалению, наши возможности исследовать эволюцию органических соединений в протопланетных дисках весьма ограничены. По размеру они очень малы, и искать в них органические молекулы еще сложнее, чем в молекулярных облаках. Пока что в формирующихся планетных системах других звезд обнаружено около десятка молекул. Конечно, в их число входят и простые органические соединения (в частности, формальдегид), но более подробно эволюцию органики в этих условиях мы пока описать не можем.
На помощь приходят исследования нашей собственной планетной системы. Правда, ей уже больше четырех с половиной миллиардов лет «от роду», но часть ее первичного протопланетного вещества и по сей день сохранилась в некоторых метеоритах. Именно в них обилие органики оказалось вполне впечатляющим - особенно в так называемых углистых хондритах, составляющих несколько процентов от общего числа упавших на Землю «небесных камней». Они обладают рыхлой глинистой структурой, богаты связанной водой, но главное - значительную часть их вещества «занимает» углерод, входящий в состав множества органических соединений. Метеоритная органика состоит из относительно простых молекул, среди которых есть и аминокислоты, и азотистые основания, и (карбоновые кислоты, и «нерастворимое органическое вещество», представляющее собой продукт полимеризации (осмоления) более простых соединений. Конечно, мы не можем сейчас уверенно сказать, что эта органика была «унаследована» из вещества протосолнечного молекулярного сгустка, но косвенные признаки на это указывают - в частности, в метеоритах обнаружен явный избыток изотопомеров ряда молекул.

Ацетальдегид (слева) и его изомеры - виниловый спирт и окись этилена - также обнаружены в межзвездном пространстве.

10 восьмиатомных

В 1997 г. радионаблюдения подтвердили наличие в космосе уксусной кислоты.

9 девятиатомных молекул и 17 молекул, содержащих от 10 до 70 атомов

Одни из самых тяжелых (и длинных) молекул, найденных в космическом пространстве, относятся к классу полиинов - они содержат несколько тройных связей, последовательно соединенных «в цепочку» одинарными связями. В земных условиях не встречаются.

МОЛЕКУЛЫ, ОТКРЫТЫЕ К НАСТОЯЩЕМУ ВРЕМЕНИ В МЕЖЗВЕЗДНОМ ПРОСТРАНСТВЕ

Изотопомерами или изотопологами называют молекулы, в которых один или несколько атомов замещены неосновным (не самым распространенным) изотопом химического элемента. Например, изотопомером является тяжелая вода, в которой легкий изотоп водорода протий замещен дейтерием. Особенность химии молекулярных облаков состоит в том, что в них изотопомеры образуются несколько более эффективно, чем «обычные» молекулы. Например, содержание дейтерирован-ого формальдегида (HDCO) может составлять десятки процентов от содержания обычного формальдегида - при том, что в целом атомов дейтерия (D) в космосе в сотню тысяч раз меньше, чем атомов протия (Н). Такое же «предпочтение» межзвездные молекулы отдают изотопу азота 15N против обычного 14N. И такое же относительное переобогащение наблюдается в метеоритной органике.
Пока из имеющихся данных можно сделать три важных вывода. Во-первых, органические соединения очень высокой степени сложности весьма эффективно синтезируются в межзвездной среде нашей и других галактик. Во-вторых, эти соединения могут сохраняться в протопланетных дисках и входить в состав планетезималей - «зародышей» планет. И наконец, даже если органика «не пережила» сам процесс формирования Земли или другой планеты, она вполне могла попасть туда позже с метеоритами (как это происходит и в наши дни).
Естественно, возникает вопрос о том, как далеко мог зайти органический синтез на допланетном этапе. А что, если с метеоритами на Землю попали не «кирпичики» для зарождения жизни, а сама жизнь? В конце концов, в начале XX века казалось невозможным появление в МЗС даже простых двухатомных молекул. Теперь же мы массово находим в молекулярных облаках вещества, названия которых трудно выговорить с первого раза. Обнаружение в МЗС аминокислот - скорее всего, лишь вопрос времени. Что же мешает сделать следующий шаг и предположить, что метеориты занесли на Землю жизнь «в готовом виде»?
И действительно, уже несколько раз в литературе появлялись сообщения о том, что в метеоритах обнаружены остатки простейших внеземных организмов... Однако пока эти сведения слишком ненадежны и разрознены, чтобы можно было уверенно включить их в обшую картину происхождения жизни.

Природа щедро разбросала свои материальные ресурсы по нашей планете. Но нетрудно заметить зависимость: чаще всего человек использует те веще­ства, запасы сырья которых ограничены, и наоборот, крайне слабо использует такие химические элементы и их соединения, сырьевые ресурсы которых почти без­граничны. В самом деле, 98,6% массы физически доступного слоя Земли со­ставляют всего восемь химических элементов: железо (4,6%) , кислород (47%), кремний (27,5%), магний (2,1%), алюминий (8,8%), кальций (3,6%), натрий (2,6%), калий (2,5%), никель. Более 95% всех металлических изделий, конст­рукций самых разнообразных машин и механиз­мов, транспортных путей произ­водятся из железорудного сырья. Ясно, что такая практика расточительна с точки зрения как ис­черпания ресурсов железа, так и энергетических затрат на пер­вичную обработку железорудного сырья.

Глядя на приведенные здесь данные о распространенности восьми названных химических элементов, можно смело утвер­ждать о больших возможностях в ис­пользовании алюминия, а затем магния и, может быть, кальция в создании ме­таллических материалов ближайшего будущего,но для этого должны быть раз­работаны энергоэкономичные методы производства алюминия с целью получе­ния хлорида алюминия и восстановле­ния последнего до металла. Этот метод был уже опробован в ря­де стран и дал основание для проектирования алюми­ниевых за­водов большой мощности. Но выплавка алюминия в масштабах, со­поставимых с производством чугуна, стали и ферросплавов, еще не может быть реализована в самое ближайшее время, по­тому что эта задача должна решаться параллельно с разработкой соответствующих алюминиевых сплавов, способных конкуриро­вать с чугуном, сталью и другими материалами из железорудного сы­рья.

Широкая распространенность кремния служит посто­янным укором человече­ству в смысле чрезвычайно низкой сте­пени использования этого химического элемента в производстве материалов. Силикаты составляют 97% всей массы земной коры. И это дает основание утверждать, что именно они должны быть основным сырьем для производства практически всех строительных материалов и полуфабрикатов при изготовлении керамики, способной конкурировать с ме­таллами. Надо, кроме того, принимать во внимание еще и огромные скопления промышленных отходов силикатного характера, таких, как "пустая порода" при добыче угля, "хвосты" при добыче металлов из руд, зола и шлаки энергетиче­ского и металлургического производст­ва. И как раз эти силикаты необходимо в первую очередь превращать в сырье для строительных материалов. С одной стороны, это обещает большие выгоды, так как сырье не надо добывать, оно в готовом виде ждет своего потребителя. А с другой - его утилизация является мерой борьбы с загрязнением окружающей среды.

В космосе наиболее широко распространены лишь два элемента - водород и гелий, все остальные элементы можно рассматри­вать только как дополнение к ним.

Вопрос 54. Развитие представлений о химическом строение вещества. Химиче­ские соединения.

Химией называют науку о химических элементах и их соедине­ниях.

История развития химических концепций начинается с древних времен. Де­мокрит, Эпикур высказывали гениальные мысли о том, что все тела состоят из атомов различной величины и разной формы, что и обусловливает их качест­венное различие. Аристо­тель и Эмпедокл считали, что в телах сочетаются

Первый по-настоящему действенный способ определения свойств вещества был предложен во второй половине XVII в. английским ученым Р. Бойлем (1627-1691).Результаты экспериментальных исследований Р. Бойля пока­зали, что качества и свойства тел зависят от того, из каких ма­териальных элементов они состоят.

В 1860 г. выдающимся русским химиком А.М. Бутлеровым (1828-1886) была создана теория химического строения вещества - возник более высокий уровень развития химических знаний - структурная химия.

В этот период зарождалась технология органических веществ.

Под влиянием новых требований производства возникло учение о химиче­ских процессах, в котором учитывалось изменение свойств вещества под влия­нием температуры, давления, раство­рителей и других факторов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов.

В 1960-1970 гг. появился следующий, более высокий, уровень химических знаний - эволюционная химия. В основе ее лежит принцип самоорганизации химических систем, т. е. принцип применения химического опыта высокоорга­низованной живой природы.

До недавнего времени химики считали ясным, что следует относить к хими­ческим соединениям, а что - к смесям. Еще в 1800-1808 гг. французский уче­ный Ж. Пруст (1754-1826) установил закон постоянства состава: любое инди­видуальное химическое соединение обладает строго определенным, неизмен­ным составом, прочным притяжением составных частей (атомов) и тем отлича­ется от смесей

С конца XIX в. возобновились исследования, подвергавшие сомнению абсо­лютизацию закона постоянства состава. Выдаю­щийся русский химик Н.С. Кур­наков (1860-1941) в результате исследований интерметалличе­ских соедине­ний, т. е. соединений, состоящих из двух металлов, установил образование на­стоящих индивидуаль­ных соединений переменного состава и нашел границы их од­нородности на диаграмме "состав-свойство", отделив от них об­ласти сущест­вования соединений стехиометрического состава. Химические соединения пе­ременного состава он назвал бертоллидами , а за соединения­ми постоянного со­става оставил названиедальтониды .

Как показали результаты физических исследований, суть проблемы химиче­ских соединений состоит не столько в посто­янстве или непостоянстве химиче­ского состава, сколько в физи­ческой природе химических связей, объединяю­щих атомы в единую квантово-механическую систему - молекулу.

Число химических соединений огромно. Они отличаются как составом, так и химическими и физическими свойствами. Но все же химическое соединение - качественно определенное веще­ство, состоящее из одного или нескольких хи­мических элемен­тов.